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Abstract

We consider the linear field-road system, a model for fast diffusion channels in pop-
ulation dynamics and ecology. This system takes the form of a system of PDEs set on
domains of different dimensions, with exchange boundary conditions. Despite the intricate
geometry of the problem, we provide an explicit expression for its fundamental solution
and for the solution to the associated Cauchy problem. The main tool is a Fourier (on
the road variable)/Laplace (on time) transform. In addition, we derive estimates for the
decay rate of the L∞ norm of these solutions.
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1 Introduction
In this work we consider the solutions (v = v(t, x, y), u = u(t, x)) to the linear field-road model

∂tv = d∆v, t > 0, x ∈ RN−1, y > 0,
−d∂yv|y=0 = µu− νv|y=0, t > 0, x ∈ RN−1,

∂tu = D∆u+ νv|y=0 − µu, t > 0, x ∈ RN−1.

(1.1)

Here N ≥ 2 and d, D, µ and ν are positive constants. This system is actually the linear (purely
diffusive) part of the field-road model, introduced by Berestycki, Roquejoffre and Rossi [10]
to describe the spread of invasive species in presence of networks with fast propagation. We
review the original system later in this section.

Let us mention that phenomena of spatial spread are highly relevant to the understanding
of biological invasions, spreads of emergent diseases, as well as spatial shifts in distributions
in the context of climate change. There is a wide literature dedicated to these topics, let
us refer for instance to [21, 22] and the reference therein for more details. In the recent
years, there has been a growing recognition of the importance of fast diffusion channels
on biological propagations: for instance, an accidental transportation via human activities
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of some individuals towards northern and eastern France may be the cause of accelerated
propagation of the pine processionary moth [26]. Also, in Canada, some GPS data revealed
that wolves travel faster along seismic lines (i.e. narrow strips cleared for energy exploration),
thus increasing their chances to meet a prey [20]. It is also acknowledged that fast diffusion
channels (roads, airlines, etc.) play a central role in the propagation of epidemics. As is well
known, the spread of the black plague, which killed about a third of the European population
in the 14th century, was favoured by the trade routes, especially the Silk Road, see [28]. More
recently, some evidences of the the radiation of the COVID epidemic along highways and
transportation infrastructures were found [17].

In order to capture the phenomena induced by such fast diffusion channels, the so-called
field-road reaction diffusion system

∂tv = d∆v + f(v), t > 0, x ∈ RN−1, y > 0,
−d∂yv|y=0 = µu− νv|y=0, t > 0, x ∈ RN−1,

∂tu = D∆u+ νv|y=0 − µu, t > 0, x ∈ RN−1,

(1.2)

was proposed by Berestycki, Roquejoffre and Rossi [10]. The mathematical problem then
amounts to describing survival and propagation in a non-standard physical space: the geo-
graphical domain consists in the half-space (the “field”) x ∈ RN−1, y > 0, bordered by the
hyperplane (the “road”) x ∈ RN−1, y = 0. In the field, individuals diffuse with coefficient
d > 0 and their density is given by v = v(t, x, y). In particular ∆v has to be understood
as ∆xv + ∂yyv. On the road, individuals typically diffuse faster (D > d) and their density
is given by u = u(t, x). In particular ∆u has to be understood as ∆xu. The exchanges of
population between the road and the field are described by the second equation in system
(1.2), where µ > 0 and ν > 0. These Robin type boundary conditions link the field and the
road equations and, in some sense, are the core of the model.

In a series of works [10, 9, 12, 11], Berestycki, Roquejoffre and Rossi studied the field-road
system with N = 2 and f a Fisher-KPP nonlinearity. They shed light on an acceleration
phenomenon: when D > 2d, the road enhances the global diffusion and the spreading speed
exceeds the standard Fisher-KPP invasion speed. Since then, many generalizations or related
problems have been studied. Field-road models with (periodic) heterogeneities are considered
in [18, 33, 1]. Situations where the field is not a half-space but a more general domain are
studied in [31, 27, 15, 13]. The setting where the Laplace operators are replaced with non-local
operators, accounting for more complex diffusion processes, is tackled in [6, 5]. The papers
[7, 8] consider the interaction between fast-diffusion networks and ecological phenomena such
as climate change. In [23, 25, 24], the author introduces long range exchanges so that the
road may catch individuals from anywhere in the field and vice versa.

Despite these results on (1.2) and its variations, it turned out that the linear field-road
system — obtained by letting f ≡ 0 in (1.2) — was not fully understood: there were no
complete expressions for the fundamental solution, and the decay rate of the L∞ norm of the
solutions to (1.1) as t → +∞ was not known.

In the present paper, we thus consider (1.1) as a starting point and intend at filling
this gap. It turns out that we can reach an explicit expression for both the fundamental
solution and the solution to the associated Cauchy problem. To do so, we perform a “Fourier
in x/Laplace in t” transform, which seems to be the good way to understand the intricate
exchange boundary conditions. These explicit expressions enable, in particular, to provide a
sharp (possibly up to a logarithmic term) decay rate of the L∞ norm of the solution.
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Such a linear rate estimate is a key stone information to tackle difficult nonlinear issues.
For instance, it is expected, see [16] or [3], that such a decay rate determines the so-called
Fujita exponent pF for the system (1.2) when f(v) = v1+p: this exponent separates “sys-
tematic blow-up” (when 0 < p ≤ pF ) from “possible extinction” (when p > pF ). Also,
understanding the Fujita blow-up phenomena when f(v) = v1+p typically enables, see [2], to
solve the issue of “extinction vs propagation” in the population dynamics model (1.2) with
f(v) = v1+p(1 − v). Such a nonlinearity serves a model for the so-called Allee effect [4],
roughly meaning that the per capita growth rate of the population is not maximal at small
density. We plan to address such issues in a future work.

2 Main results
Let N ≥ 2 be an integer. A generic point X ∈ RN will be written X = (x, y) with x ∈ RN−1

and y ∈ R. For the “variable of integration”, we reserve the notation Z = (z, ω) ∈ RN , with
z ∈ RN−1 and ω ∈ R. For the “x-Fourier variable”, we use the notation ξ ∈ RN−1, while,
for the “t-Laplace variable”, we reserve the notation s > 0, see Appendix A.3. We denote
the upper half-space (the “field”) RN

+ := RN−1 × (0,+∞), its boundary being the hyperplane
(the “road”) ∂RN

+ = RN−1 × {0}.
For given µ, ν > 0 and D > d > 0 (we refer to Remark 4.1 for the case D ≤ d), we thus

consider the linear field-road problem (1.1) supplemented with the initial datum{
v|t=0 = v0, X ∈ RN

+ , v0 ∈ L∞(RN
+ ),

u|t=0 = u0, x ∈ RN−1, u0 ∈ L∞(RN−1).
(2.1)

Our first main contribution is to provide an explicit expression of the solution to this Cauchy
problem.
Theorem 2.1 (Solution to the linear field-road Cauchy problem) Assume D > d. Then the
unique bounded solution to the Cauchy problem (1.1)– (2.1) is

v(t,X) = V (t,X) + µ√
d

∫
RN−1

Λ(t, z, y) u0(x− z) dz

+ µ ν√
d

∫ t

0

∫
RN−1

Λ(s, z, y) V |y=0(t− s, x− z) dz ds, (2.2)

u(t, x) = e−µtU(t, x) + ν

∫ t

0
e−µ(t−s)

∫
RN−1

GD
R (t− s, x− z) v|y=0(s, z) dz ds, (2.3)

where

• V = V (t,X) is the solution to the Cauchy problem
∂tV = d∆V, t > 0, x ∈ RN−1, y > 0,
νV |y=0 − d∂yV |y=0 = 0, t > 0, x ∈ RN−1,

V |t=0 = v0, x ∈ RN−1, y > 0,
(2.4)

• U = U(t, x) is the solution to the Cauchy problem{
∂tU = D∆U, t > 0, x ∈ RN−1,

U |t=0 = u0, x ∈ RN−1,
(2.5)
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• GD
R = GD

R (t, x) denotes the (N − 1)-dimensional Heat kernel with diffusion D, that is

GD
R (t, x) := 1

(4πDt) N−1
2
e− ∥x∥2

4Dt , (2.6)

• and Λ = Λ(t, x, y) is defined as

Λ(t, x, y) := e− y2
4dt

(2π)N−1

∫
RN−1

[
aαΦα + bβΦβ + cγΦγ

]
(t, ξ, y) e−dt∥ξ∥2+iξ·x dξ, (2.7)

with (α, β, γ) = (α, β, γ)(ξ) being the three complex roots of the δ-indexed polynomials

Pδ(σ) := σ3 + ν√
d
σ2 + (µ+ δ)σ + ν δ√

d
, with δ := (D − d)∥ξ∥2, (2.8)

(a, b, c) = (a, b, c)(ξ) being given by

a := 1
(α− β)(α− γ) , b := 1

(β − α)(β − γ) , c := 1
(γ − α)(γ − β) , (2.9)

and for • ∈ {α, β, γ},

Φ•(t, ξ, y) := Erfc
Γ

(
−2 •

√
d t+ y

2
√
dt

)
, (2.10)

where Γ(ℓ) := e−ℓ 2, and Erfc is the complementary error function, whose definition is
recalled in Appendix A.1.

Let us give some remarks on Theorem 2.1. First, the theorem gives the unique bounded
solution. Indeed, there could be non-physical solutions that change sign and grow very fast at
infinity: this fact was proved for the Heat equation by Tychonoff [32], see also [29, Chapter
9]. To get rid of such solutions, and so, to ask uniqueness, one needs to impose very loose
restriction on the growth at infinity; here we choose boundedness for the sake of simplicity.

Next, the Cauchy problem (2.5) is nothing else than the Heat equation in the hyperplane
RN−1 and both the expression and the decay rate of its solution U = U(t, x) are very well-
known. On the other hand, the Cauchy problem (2.4) is the Heat equation in the half-space
RN

+ with Robin boundary conditions, and the understanding of its solution V = V (t,X) is
an important preliminary, that we recall in Section 3.

Last, but not least, the “migration-kernel” Λ = Λ(t, x, y) is the keystone to write the
solution to the field-road diffusion model. Its main role is to describe the in-flux of individuals
in the field from the road via the last two terms of v in (2.2), whose form evokes a Duhamel’s
formula. We may give a physical sense to Λ by remarking that it is the “v-component” of
the solution to (1.1) starting from (v0, u0) ≡ (0,

√
d

µ δx=0). Notice also that, having in mind
the acceleration phenomenon [10, 9] when D > 2d, Λ is the only term in the expression of
v that involves the constant D. However, the expression of Λ(t, x, y) is quite intricate. As a
consequence of our Fourier/Laplace transform approach, it involves an integral over ξ ∈ RN−1.
Furthermore, we show in Appendix A.2 that, for almost all ξ ∈ RN−1, the three complex roots
α = α(ξ), β = β(ξ) and γ = γ(ξ) of the polynomials Pδ are distinct, which allows to define

4



a = a(ξ), b = b(ξ) and c = c(ξ) in (2.9). Further details will appear in Section 4 and 5 and in
Appendix A.2.

Our second main contribution is to estimate the decay rate of the solution to the linear
field-road system (1.1) starting from the datum, say{
v|t=0 = v0, X ∈ RN

+ , v0 ∈ L∞(RN
+ ) is nonnegative, and compactly supported,

u|t=0 = u0, x ∈ RN−1, u0 ∈ L∞(RN−1) is nonnegative, and compactly supported.
(2.11)

In the statement below, the notation B ≲ B′ means there is a constant k = k(N, d,D, ν, µ) > 0
such that B ≤ kB′.

Theorem 2.2 (Decay rate of the solutions to the linear field-road system) Assume D > d
and let (v, u) be the bounded solution to the Cauchy problem (1.1)– (2.11). Then

∥v(t, )∥L∞(RN
+ ) ≲

ln(1 + t) +
(1 + t) N

2
, ∀t > 0, (2.12)

∥u(t, )∥L∞(RN−1) ≲
ln(1 + t) +

(1 + t) N
2

, ∀t > 0, (2.13)

for some nonnegative constant depending only on v0, and some nonnegative constant
depending on both v0 and u0.

The starting point to prove this upper estimate is the explicit expression of v and u given
in Theorem 2.1. The main difficulty is to control the “migration-kernel” Λ defined in (2.7) —
(2.10) which, as explained above, is the core of the field-road model. To do so, we shall rely
on a rather technical result, namely Lemma 5.1, whose proof needs a full understanding of
the δ-indexed polynomials Pδ in (2.8), achieved in Appendix A.2. Let us emphasize that
the expression of Λ we own, namely (2.7) — (2.10), is highly conditioned by the fact that, at
some point, we use a decomposition into partial fractions to match up with known forms of
Laplace-transforms. This decomposition makes appear the artefacts a, b and c which blow
up as the roots of Pδ collide for singular values of δ, see (2.9). Fortunately, due to the
compensating structure of aαΦα + bβΦβ + cγΦγ and as confirmed by the technical Lemma
5.1, these singularities are “artificial”.

By following the proof in Section 5, one can track the values of and and check, in
particular, that v0 ≡ 0 implies = 0. As a result, if there is initially no individual in the
field, the estimate of the decay rate becomes of the magnitude O((1 + t)−N/2), which corre-
sponds to the decay rate of the Heat equation in the half space RN

+ with Neumann boundary
conditions — see Theorem 3.1. This is consistent with the fact that the boundary conditions
of the field-road model are of the exchange type so that, roughly speaking, individuals are
“not lost” but “stored” in the road. On the other hand, if v0 ̸≡ 0, our estimate of the decay
rate becomes of the magnitude O((1+ t)−N/2 ln(1+ t)), which is very slightly “less good”. We
believe that the actual decay rate is always of the magnitude O((1 + t)−N/2): to deal with
the terms P (t, x, y) and Q(t, x, y) appearing in (5.1), we rely on the uniform estimate (5.4)
of the rather intricate function Φ(t, ξ, y) appearing in Lemma 5.1. The use of this uniform
estimate is the cause of the logarithmic term appearing later, but refined estimates seem
delicate to reach. Notice however that, in order to study the Fujita blow-up phenomenon, the
logarithmic term should only play a (bad) role in the so-called critical case.
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The organization of the present paper is as follows. In Section 3, we recall some facts
about the fundamental solution of the Heat equation in a half-space, that will prove useful in
the sequel. In particular, we give a complete derivation of the expression of the fundamental
solution in the case of Robin boundary conditions, thus introducing the strategy of proof we
will employ to study the complete system (1.1) in Section 4, where we compute the explicit
form of the solutions of the linear field-road system, while their decay rate is estimated in
Section 5. Last, in Section 6, we present some numerical simulations which not only “validate”
Theorem 2.2 but also explore some open problems related to the level sets of the solution, or
to the sign of the flux of individuals from the road to the field.

3 The Heat equation in the half-space
As an important preliminary, we discuss in this section the Heat equation in the half-space,
in particular the explicit expression and the decay rate of the L∞ norm of the solution to the
associated Cauchy problem with different boundary conditions. These facts are very classical
for the Neumann and Dirichlet boundary conditions, but the details for the case of Robin
boundary conditions are not so easy to find. We therefore take this opportunity to present
the main arguments, by using a Fourier/Laplace transform strategy, which we use again in
the next section to deal with the whole field-road system (1.1).

Let N ≥ 1 be an integer. We recall that a generic point X ∈ RN will be written X = (x, y)
with x ∈ RN−1 and y ∈ R. For the “variable of integration”, we reserve the notation
Z = (z, ω) ∈ RN , with z ∈ RN−1 and ω ∈ R. For d > 0, we denote the N -dimensional
Heat kernel with diffusion d,

G(t,X) := 1
(4πdt) N

2
e− ∥X∥2

4dt = 1
(4πdt) N

2
e− ∥x∥2+y2

4dt , (3.1)

and finally, we denote the upper half-space RN
+ := RN−1 × (0,+∞), its boundary being the

hyperplane ∂RN
+ = RN−1 × {0}.

For 0 ≤ θ ≤ 1, we thus consider the Cauchy problem
∂tv = d∆v, t > 0, X ∈ RN

+ ,

θv + (1 − θ)d∂nv = 0, t > 0, X ∈ ∂RN
+ ,

v|t=0 = v0, X ∈ RN
+ ,

(3.2)

where, say, v0 ∈ L∞(RN
+ ). Here n := (0RN−1 ,−1) and the boundary condition may be recast

θv − (1 − θ)d∂yv = 0, t > 0, X ∈ ∂RN
+ .

In this section, the notation B ≲ B′ means there is a constant k = k(N, d, θ) > 0 such
that B ≤ kB′.

Theorem 3.1 (Heat equation in the half-space) The solution to the Cauchy problem (3.2) is

v(t,X) =
∫
RN

+

Hθ(t,X,Z) v0(Z) dZ, (3.3)

for some Hθ(t,X,Z) precised below.
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(i) When θ = 0 (Neumann case), we have

H0(t,X,Z) = G(t, x− z, y − ω) +G(t, x− z, y + ω),

and

∥v(t, )∥L∞(RN
+ ) ≲

∫
RN

+
|v0(Z)| dZ

t
N
2

, ∀t > 0.

(ii) When θ = 1 (Dirichlet case), we have

H1(t,X,Z) = G(t, x− z, y − ω) −G(t, x− z, y + ω),

and

∥v(t, )∥L∞(RN
+ ) ≲

∫
RN

+
ω |v0(Z)| dZ

t
N+1

2
, ∀t > 0.

(iii) When 0 < θ < 1 (Robin case), we have

Hθ(t,X,Z) = H0(t,X,Z) − 2
√
π A

√
dt G(t, x− z, y + ω) Erfc

Γ

(2Adt+ y + ω

2
√
dt

)
, (3.4)

= H1(t,X,Z) + 2G(t, x− z, y + ω)
(

1 −
√
π A

√
dt

Erfc
Γ

(2Adt+ y + ω

2
√
dt

))
, (3.5)

where
A := θ

d(1 − θ) ,

Γ(ℓ) := e−ℓ 2, and the definition of Erfc is recalled in Appendix A.1. Furthermore,

∥v(t, )∥L∞(RN
+ ) ≲

∫
RN

+
(1 + ω)|v0(Z)| dZ

t
N+1

2
, ∀t > 0, (3.6)

and

∥v(t, )∥L∞(RN
+ ) ≲ (1 + t) N+1

2
, ∀t > 0, (3.7)

where :=
(

∥v0∥
2

N+1
L∞(RN

+ ) +
(∫

RN
+

(1 + ω)|v0(Z)| dZ
) 2

N+1
)N+1

2
.

This theorem is rather classical, in particular points (i) and (ii). A possible way to prove
it is to use some continuation arguments. For instance, to prove (i), one defines ṽ(t,X) as
the solution of the Heat equation in the whole of RN arising from the initial datum

ṽ0(x, y) :=
{
v0(x, y) if y > 0,
v0(x,−y) if y < 0.

Then, by uniqueness of the (bounded) solutions of the Heat equation, ṽ remains even with
respect to y, is C∞ in RN × (0,+∞) by usual regularity results on parabolic equations. Thus
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it satisfies ∂yṽ(t, x, 0) = 0 for all t > 0 and all x ∈ RN−1. Hence, v(t, x, y) stands as the
restriction of ṽ(t, x, y) to the upper-half-space, and we have

v(t,X) =
∫
RN

G(t,X − Z) ṽ0(Z) dZ

=
∫
RN

+

[
G(t, x− z, y − ω) +G(t, x− z, y + ω)

]
v0(z, ω) dZ,

from which we deduce the expression of H0 and the decay rate. The point (ii) can be proven
in the same way by considering this time, for ṽ0, the odd-continuation (with respect to y) of
v0. A more tricky (and less known) continuation argument can be used to reach the point
(iii). However, in view of the sequel, let us present now the detailed proof of (iii) using rather
a Fourier/Laplace transform strategy.

In the following, the x-Fourier transform of u shall be denoted by u, the t-Laplace one
by u and the x-Fourier/t-Laplace one by u. We refer to Appendix A.3 for conventions and
notations related to these transforms.

Proof of Theorem 3.1, (iii). Applying the t-Laplace transform to the first equation in (3.2),
namely ∂tv(t, x, y) = d(∆x + ∂yy)v(t, x, y), yields the elliptic PDE

d
(
∆xv (s, x, y) + ∂yyv (s, x, y)

)
− sv (s, x, y) = −v0(x, y), (x, y) ∈ RN

+ ,

where s > 0 acts as a parameter. Then by applying the x-Fourier transform, we reach the
linear second order ODE

d∂yyv (s, ξ, y) −
(
s+ d∥ξ∥2

)
v (s, ξ, y) = −v0(ξ, y), y > 0, (3.8)

where s > 0 and ξ ∈ RN−1 act as parameters. Setting σ :=
√
s+ d∥ξ∥2 , solutions of (3.8)

may be written

v (s, ξ, y) = e
σ√
d

y
(
C1 − 1

2
√
d σ

∫ y

0
e

− σ√
d

ω
v0(ξ, ω)dω

)
+ e

− σ√
d

y
(
C2 + 1

2
√
d σ

∫ y

0
e

σ√
d

ω
v0(ξ, ω)dω

)
,

where C1 and C2 are constants (with respect to y) to be determined. In order to insure
lim

y→+∞
v (s, ξ, y) = 0, one needs

C1 = 1
2
√
d σ

∫ +∞

0
e

− σ√
d

ω
v0(ξ, ω)dω. (3.9)

Next, since

v (s, ξ, 0) = C1 + C2 and ∂yv (s, ξ, 0) = σ√
d

(C1 − C2),

the Robin boundary conditions enforce

C2 =
(

1 − 2A
√
d

σ +A
√
d

)
C1. (3.10)
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This brings us to the following explicit expression for v :

v (s, ξ, y) = 1
2
√
d

∫ +∞

0

e− σ√
d

|y−ω|

σ
+ e

− σ√
d

(y+ω)

σ
− 2A

√
d
e

− σ√
d

(y+ω)

σ(σ +A
√
d )

v0(ξ, ω)dω,

where we recognize known forms of t-Laplace transforms evaluated at σ2 = s+ d∥ξ∥2 — see
Lemma A.6, (iii) and (iv) — so that

v (s, ξ, y) = 1
2
√
d

∫ +∞

0
L
[
t 7→ e− (y−ω)2

4dt

√
πt

+ e− (y+ω)2
4dt

√
πt

− 2A
√
d

Erfc
Γ

(2Adt+ y + ω

2
√
dt

)
e− (y+ω)2

4dt

]
(s+ d∥ξ∥2) v0(ξ, ω)dω.

Using Lemma A.7 (iv), we can now get rid of the t-Laplace transform and get

v (t, ξ, y) = 1
2
√
d

∫ +∞

0

[
e− (y−ω)2

4dt

√
πt

+ e− (y+ω)2
4dt

√
πt

(
1 − 2

√
π A

√
dt

Erfc
Γ

(2Adt+ y + ω

2
√
dt

))]

e−dt∥ξ∥2
v0(ξ, ω)dω.

Finally, note that

e−dt∥ξ∥2
v0(ξ, ω) = F

 e− ∥ ∥2
4dt

(4πdt)
N−1

2

(ξ) × F [v0( , ω)](ξ) = F

 e− ∥ ∥2
4dt

(4πdt)
N−1

2
∗ v0( , ω)

(ξ),
whence we can also get rid of the x-Fourier transform and reach

v(t, x, y)=
∫
RN

+

 e− ∥x−z∥2
4dt

(4πdt)
N−1

2

e− (y−ω)2
4dt

√
4πdt

+ e− (y+ω)2
4dt

√
4πdt

(
1 − 2

√
π A

√
dt

Erfc
Γ

(2Adt+ y + ω

2
√
dt

))
v0(Z) dZ. (3.11)

Expressions (3.4) and (3.5) of Hθ are immediately deduced from (3.11).
We now turn to the decay rate. It is readily seen that

−
√
π

Erfc
Γ (ℓ) ≤ − 1

1 + ℓ
, ∀ℓ ≥ 0.

As a consequence, for all t > 0, all y ≥ 0, and all ω ≥ 0,

−
√
π

Erfc
Γ

(2Adt+ y + ω

2
√
dt

)
≤ − 2

√
dt

2Adt+ 2
√
dt + y + ω

.

Using this into (3.5), we see that, for all t > 0, all X ∈ RN
+ , and all Z ∈ RN

+ ,

0 < Hθ(t,X,Z) −H1(t,X,Z) ≤ 2G(t, x− z, y + ω) 2
√
dt + y + ω

2Adt+ 2
√
dt + y + ω

≲
m(t)
t

N
2
, (3.12)
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where
m(t) := sup

r≥0

(
2
√
dt + r

2Adt+ 2
√
dt + r

e− r2
4dt

)
.

An elementary analysis shows that

m(t) = max
0≤r≤

√
dt

(
2
√
dt + r

2Adt+ 2
√
dt + r

e− r2
4dt

)
≤ max

0≤r≤
√

dt

(
2
√
dt + r

2Adt+ 2
√
dt + r

)
≲

1√
t
.

From this, (3.12), and the case (ii), we obtain the decay rate as stated in (3.6). Combining
(3.6) and the fact that ∥v(t, )∥L∞(RN

+ ) ≤ ∥v0∥L∞(RN
+ ), one can check that (3.7) holds true.

Let us conclude this section with the following direct consequence of Theorem 3.1.
Corollary 3.2 For any 0 ≤ θ ≤ 1, we have

Hθ(t,X,Z) = e− ∥x−z∥2
4dt

(4πdt)
N−1

2
×H (1)

θ (t, y, ω),

where H (1)
θ denotes Hθ for N = 1.

4 The solution to the field-road model Cauchy problem
In this section, we explicitly obtain the bounded solution to the Cauchy problem (1.1) – (2.1).
Before starting, we recall that the x-Fourier transform of u is denoted by u, the t-Laplace
one by u and the x-Fourier/t-Laplace one by u. We refer to Appendix A.3 for conventions
and notations related to these transforms.

Proof of Theorem 2.1. We start with establishing expression (2.3) for u = u(t, x) which is the
simplest to get. To do so, we apply the t-Laplace and then the x-Fourier transforms to the
third equation in (1.1), namely ∂tu(t, x) = D∆xu(t, x) + νv|y=0(t, x) − µu(t, x). This yields
the algebraic relation

−D∥ξ∥2 u(s, ξ) + ν v |y=0(s, ξ) − µ u(s, ξ) = −u0(ξ) + s u(s, ξ), s > 0, ξ ∈ RN−1,

which is recast

u(s, ξ) = u0(ξ) + ν v |y=0(s, ξ)
µ+ s+D∥ξ∥2 , s > 0, ξ ∈ RN−1. (4.1)

It is now possible to reach (2.3) from (4.1) by using properties and known forms of t-Laplace
and x-Fourier transforms — see Lemmas A.6, (i) and (ii), and A.7, (ii) and (iii):

u(s, ξ) = L
[
t 7→ e−(µ+D∥ξ∥2)t u0(ξ)

]
(s) + νL

[
t 7→ e−(µ+D∥ξ∥2)t

]
(s) × L

[
t 7→ v |y=0(t, ξ)

]
(s)

= L
[
t 7→ e−(µ+D∥ξ∥2)t u0(ξ)

]
(s) + νL

[
t 7→

∫ t

0
e−(µ+D∥ξ∥2)(t−τ) v |y=0(τ, ξ) dτ

]
(s)

= LF
[
(t, x) 7→ e−µt [u0 ∗GD

R (t, )] (x)
]

(s, ξ)

+ νLF
[
(t, x) 7→

∫ t

0
e−µ(t−τ) [v|y=0(τ, ) ∗GD

R (t− τ, )] (x) dτ
]

(s, ξ)

= LF
[
(t, x) 7→ e−µt

(
U(t, x) + ν

∫ t

0
eµτ

∫
RN−1

GD
R (t− τ, x− z)v|y=0(τ, z) dz dτ

)]
(s, ξ)

10



which provides (2.3).
We now turn to the expression (2.2) for v = v(t,X). For convenience let us set

σ :=
√
s+ d∥ξ∥2 and Σ :=

√
s+D∥ξ∥2 . (4.2)

As in Section 3, applying t-Laplace then x-Fourier transforms on the first equation in (1.1),
namely ∂tv(t, x, y) = d(∆x +∂yy)v(t, x, y), leads to the linear second order ODE (where s > 0
and ξ ∈ RN−1 serve as parameters)

d∂yyv (s, ξ, y) −
(
s+ d∥ξ∥2

)
v (s, ξ, y) = −v0(ξ, y), y > 0, (4.3)

whose solutions are

v (s, ξ, y) = e
σ√
d

y
(
C1 − 1

2
√
d σ

∫ y

0
e

− σ√
d

ω
v0(ξ, ω)dω

)
+ e

− σ√
d

y
(
C2 + 1

2
√
d σ

∫ y

0
e

σ√
d

ω
v0(ξ, ω)dω

)
,

where C1 and C2 are constants (with respect to y) to be determined. In order to insure
lim

y→+∞
v (s, ξ, y) = 0, one needs

C1 = 1
2
√
d σ

∫ +∞

0
e

− σ√
d

ω
v0(ξ, ω)dω. (4.4)

Then, calling A := ν
d and B := µ

d , the exchange condition — second equation in (1.1) — is
recast Av|y=0(t, x) − ∂yv|y=0(t, x) = Bu(t, x); and since

v (s, ξ, 0) = C1 + C2 and ∂yv (s, ξ, 0) = σ√
d

(C1 − C2),

the exchange condition enforces

C2 =
(

1 − 2A
√
d

σ +A
√
d

)
C1 + B

√
d

σ +A
√
d
u(s, ξ)

=
(

1 − 2A
√
d

σ +A
√
d

)
C1 +B

√
d
u0(ξ) + ν v |y=0(s, ξ)
(Σ2 + µ)(σ +A

√
d )

, (4.5)

where we used the expression (4.1) for u(s, ξ) and the definition of Σ in (4.2). Comparing
(3.9), (3.10) with (4.4), (4.5), we see that the “deviation” of v (s, ξ, y) (of the field-road model)
from the solution to the Heat equation in the half-space (see Section 3) stands in the second
term in the right-hand side of (4.5). Hence, using the computations that have been performed
in Section 3 and calling V = V (t,X) the solution to (2.4), we reach an implicit expression
for v (s, ξ, y), namely

v (s, ξ, y) = V (s, ξ, y) +B
√
d e

− σ√
d

y u0(ξ) + ν v |y=0(s, ξ)
(Σ2 + µ)(σ +A

√
d )

. (4.6)
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Evaluating now (4.6) at y = 0 yields

v |y=0(s, ξ) = V |y=0(s, ξ) +B
√
d
u0(ξ) + ν v |y=0(s, ξ)
(Σ2 + µ)(σ +A

√
d )

,

whence

v |y=0(s, ξ) = B
√
d

(Σ2 + µ)(σ +A
√
d ) − νB

√
d
u0(ξ)

+ (Σ2 + µ)(σ +A
√
d )

(Σ2 + µ)(σ +A
√
d ) − νB

√
d
V |y=0(s, ξ). (4.7)

Plugging (4.7) into (4.6) now yields the explicit expression

v (s, ξ, y) = V (s, ξ, y) +B
√
d

e
− σ√

d
y

(Σ2 + µ)(σ +A
√
d ) − νB

√
d

[
u0(ξ) + νV |y=0(s, ξ)

]
. (4.8)

Our task is now to take the inverse Fourier/Laplace transform of the second term in the above
right-hand-side. Letting

δ := (D − d)∥ξ∥2,

one has Σ2 = σ2 + δ. Then define

Λ(s, ξ, y) := e
− σ√

d
y

(Σ2 + µ)(σ +A
√
d ) − νB

√
d

= e
− σ√

d
y

σ3 +A
√
d σ2 + (µ+ δ)σ +A

√
d δ
. (4.9)

To match up Λ(s, ξ, y) with known t-Laplace transforms, we need to expand (4.9) into partial
fractions, which requires a study of the polynomials

Pδ(σ) := σ3 +A
√
d σ2 + (µ+ δ)σ +A

√
d δ, δ ≥ 0 (since D > d).

We show in Appendix A.2 that the three complex roots α(δ), β(δ), γ(δ) of Pδ are simple for
almost all ξ ∈ RN−1. Hence, for these ξ,

Λ(s, ξ, y) = a
e

− σ√
d

y

σ − α
+ b

e
− σ√

d
y

σ − β
+ c

e
− σ√

d
y

σ − γ
, (4.10)

where a, b and c have been defined in (2.9), and do not depend on the the s variable.
Expression (4.10) of Λ shows up a known form of t-Laplace transform — see Lemma A.6, (v)
— evaluated at σ2 = s+ d∥ξ∥2, namely

Λ(s, ξ, y) = L
[
t 7→ e− y2

4dt

(
a+ b+ c√

πt
+aα

Erfc
Γ

(
−2α

√
d t+ y

2
√
dt

)
+ bβ

Erfc
Γ

(
−2β

√
d t+ y

2
√
dt

)

+ cγ
Erfc

Γ

(
−2γ

√
d t+ y

2
√
dt

))]
(s+ d∥ξ∥2).
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Observing that a + b + c = 0, using Lemma A.7, (iv), and recalling the notation Φ• defined
in statement of Theorem 2.1, see (2.10), we thus reach

Λ(s, ξ, y) = L
[
t 7→ e− y2

4dt

[
aαΦα + bβΦβ + cγΦγ

]
(t, ξ, y) e−dt∥ξ∥2

]
(s). (4.11)

We know from Lemma A.6, (i), that e−dt∥ξ∥2 = F [Gd
R(t, )] (ξ) — notice that here we do mean

Gd
R, and not GD

R , see (2.6). Denoting

Φ := aαΦα + bβΦβ + cγΦγ ,

we also know — see Lemma A.7, (i) — that Φ(t, ξ, y) = 1
(2π)N−1 F [F [Φ(t,− , y)]] (ξ). Hence,

from Lemma A.7, (ii), we end up with

Λ(s, ξ, y) = LF
[
(t, x) 7→ e− y2

4dt

(2π)N−1

∫
η∈RN−1

∫
χ∈RN−1

Φ(t, χ, y) Gd
R(t, x− η) eiχ·ηdχdη

]
(s, ξ)

= LF
[
(t, x) 7→ e− y2

4dt

(2π)N−1

∫
χ∈RN−1

Φ(t, χ, y) eiχ·x
∫

η∈RN−1
Gd

R(t, x− η) e−iχ·(x−η)dη dχ

]
(s, ξ)

= LF
[
(t, x) 7→ e− y2

4dt

(2π)N−1

∫
χ∈RN−1

Φ(t, χ, y) e−dt∥χ∥2+iχ·xdχ

]
(s, ξ). (4.12)

In other words, and as expected, we do have

Λ(s, ξ, y) = LF
[
(t, x) 7→ Λ(t, x, y)

]
(s, ξ),

where Λ = Λ(t, x, y) has been introduced in the statement of Theorem 2.1, see (2.7). Finally,
our last move consists in using Lemma A.7, (ii) and (iii), in (4.8), leading us, knowing Λ, to

v (s, ξ, y) = LF
[
(t, x) 7→ V (t, x, y) +B

√
d

∫
RN−1

Λ(t, z, y) u0(x− z)dz

+ νB
√
d

∫ t

0

∫
RN−1

Λ(τ, z, y) V |y=0(t− τ, x− z)dzdτ
]
(s, ξ)

which provides (2.2).

Remark 4.1 (When D ≤ d) Let us first discuss the case D < d. Then, when ξ browses
RN−1, δ = (D − d)∥ξ∥2 browses (−∞, 0]. As in Appendix A.2, it can be shown that, for
almost all δ ≤ 0 (and thus for almost all ξ ∈ RN−1), the roots of Pδ are simple. We thus can
write again (4.10) and the above proof readily applies.

We now turn on the critical case D = d. When ξ browses RN−1, δ = (D−d)∥ξ∥2 remains
stuck at zero — so that Φ(t, ξ, y) is actually independent on ξ — and only the polynomial P0
plays a role. If µ ̸= ν2

4d , then P0 has three simple roots (see Figure X and Appendix A.2) and
the above proof again readily applies. On the other hand, if µ = ν2

4d , then P0 has a simple root
and a double root. In this case, one should go back to (4.9) and, rather than (4.10), use the
adequate expansion into partial fractions. Details are omitted.
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Remark 4.2 (Adding linear growth) One may also want to consider the case with lin-
ear growth both in the field and on the road. If, in the purely diffusive system (1.1), +pv
and +qu are added to the v-equation and the u-equation respectively, then by considering
(ṽ(t, x), ũ(t, x)) := e−qt(v(t, x), u(t, x)), the system is recast (after dropping the tildes and
defining r := p− q)

∂tv = d∆v + rv, t > 0, x ∈ RN−1, y > 0,
−d∂yv|y=0 = µu− νv|y=0, t > 0, x ∈ RN−1,

∂tu = D∆u+ νv|y=0 − µu, t > 0, x ∈ RN−1,

which is the linearized system around the null steady state of the Fisher-KPP system (1.2)
originally introduced in [10, 9]. Then the first change in the proof is that (4.3) is transferred
into

d∂yyv (s, ξ, y) −
(
s+ d∥ξ∥2 − r

)
v (s, ξ, y) = −v0(ξ, y), y > 0. (4.13)

Since individuals are expected to better grow in the field than on the road, we would typically
have r > 0 and, because of that, the structure of the solutions to the linear second order ODE
(4.13) does depend upon parameters s and r, and different cases should be considered. As
a result our method readily applies but, to reach a rather explicit expression of the solution
possibly yielding new insights, further heavy computations would be necessary.

5 The decay rate of the field-road model
In this section, we estimate the decay rate of the L∞ norm of the solution to the Cauchy
problem (1.1) – (2.11). Owing to the parabolic comparison principle, we can assume without
loss of generality that v0 and u0 are smooth.

Proof of Theorem 2.2. We first handle the case of v — from which the one of u shall easily
ensue. Reminding the expression (2.2) of v,

v(t,X) = V (t,X) + µ√
d

Let us call this P (t, x, y),︷ ︸︸ ︷∫
RN−1

Λ(t, z, y) u0(x− z) dz

+ µ ν√
d

∫ t

0

∫
RN−1

Λ(s, z, y) V |y=0(t− s, x− z) dz ds︸ ︷︷ ︸
and that Q(t, x, y).

, (5.1)

The first term, namely V (t,X), is the solution to the Cauchy problem (2.4) whose L∞ control
is given in statement of Theorem 3.1 (iii):

∥V (t, )∥L∞(RN
+ ) ≲

∫
RN

+
(1 + ω)|v0(Z)| dZ

t
N+1

2
, ∀t > 0. (5.2)

To deal with terms P and Q, we will need the following lemma, whose proof is postponed at
the end of this section.
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Lemma 5.1 (L∞ control of Φ) Recall the notation introduced in the proof of Theorem 2.1:

Φ(t, ξ, y) :=
[
aαΦα + bβΦβ + cγΦγ

]
(t, ξ, y). (5.3)

Then
S(t) := sup

y≥0
sup

ξ∈RN−1
|Φ(t, ξ, y)| ≲ 1√

1 + t
, ∀t > 0. (5.4)

From here, the estimate of P is straight. Indeed, using expression (2.7) of Λ as written in
Theorem 2.1, we get

|P (t, x, y)| =

∣∣∣∣∣∣
∫

z∈RN−1

e− y2
4dt

(2π)N−1

∫
ξ∈RN−1

Φ(t, ξ, y) e−dt∥ξ∥2+iξ·z u0(x− z) dξ dz

∣∣∣∣∣∣
≤ S(t)

(2π)N−1

∫
ξ∈RN−1

e−dt∥ξ∥2
dξ

∫
z∈RN−1

|u0(z)| dz

= S(t)
(4πdt) N−1

2

∫
z∈RN−1

|u0(z)| dz.

Whence, thanks to Lemma 5.1,

∥P (t, )∥L∞(RN
+ ) ≲

∫
RN−1 |u0(z)| dz

t
N
2

, ∀t > 0. (5.5)

Controlling Q is more refined. Observe from Theorem 3.1 and Corollary 3.2 that

V (t, x, y) =
∫

η∈RN−1

∫ ∞

ω=0
Gd

R(t, x− η) H (1)
θ (t, y, ω) v0(η, ω) dω dη,

where θ := ν
1+ν ∈ (0, 1), so that

Q(t, x, y) =
∫ t

s=0

∫
z∈RN−1

e− y2
4ds

(2π)N−1

∫
ξ∈RN−1

Φ(s, ξ, y) e−ds∥ξ∥2+iξ·z

∫
η∈RN−1

∫ ∞

ω=0
Gd

R(t− s, x− z − η) H (1)
θ (t− s, 0, ω) v0(η, ω) dω dη dξ dz ds

=
∫ t

s=0

e− y2
4ds

(2π)N−1

∫
ξ∈RN−1

Φ(s, ξ, y) e−ds∥ξ∥2
∫

η∈RN−1

∫ ∞

ω=0
H (1)

θ (t− s, 0, ω) v0(η, ω)∫
z∈RN−1

Gd
R(t− s, x− z − η) eiξ·zdz dω dη dξ ds.

The integral in z is nothing else than F [Gd
R(t− s, + x− η)] (ξ) = e−d(t−s)∥ξ∥2+iξ·(x−η) so that

Q(t, x, y) =
∫ t

s=0

e− y2
4ds

(2π)N−1

∫
ξ∈RN−1

Φ(s, ξ, y) e−dt∥ξ∥2
∫

η∈RN−1

∫ ∞

ω=0
H (1)

θ (t− s, 0, ω) v0(η, ω)

eiξ·(x−η) dω dη dξ ds

=
∫ t

s=0

e− y2
4ds

(2π)N−1

∫
ξ∈RN−1

Φ(s, ξ, y) e−dt∥ξ∥2
eiξ·x

∫ ∞

ω=0
H (1)

θ (t− s, 0, ω) v0(ξ, ω) dω dξ ds.
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As a result,

|Q(t, x, y)| ≤ 1
(2π)N−1

∫ t

s=0
S(s)

∫
ξ∈RN−1

e−dt∥ξ∥2
∫ ∞

ω=0
H (1)

θ (t− s, 0, ω)
∣∣∣∣v0(ξ, ω)

∣∣∣∣ dω dξ ds.
From the control on S in Lemma 5.1 and estimate (3.7) in Theorem 3.1 (with N = 1), we
reach

|Q(t, x, y)| ≲
∫ t

s=0

∫
ξ∈RN−1

e−dt∥ξ∥2 1√
1 + s (1 + t− s)

dξ ds ≲
t

N−1
2

∫ t

0

1√
1 + s (1 + t− s)

ds,

for some ≥ 0. Finally, an elementary computation shows

∫ t

0

1√
1 + s (1 + t− s)

ds = 1√
2 + t

ln

1 +
√

1+t
2+t

1 −
√

1+t
2+t

− ln

1 +
√

1
2+t

1 −
√

1
2+t

 ≤ ln(4t+ 6)√
2 + t

,

from which there comes

∥Q(t, )∥L∞(RN
+ ) ≲

ln(1 + t)
t

N
2

, ∀t > 0. (5.6)

Gathering (5.2), (5.5) and (5.6) brings us to the announced control (2.12) on v.
Let us now turn to u. We recall its expression as written in (2.3):

u(t, x) = e−µtU(t, x) + ν

∫ t

0
e−µ(t−s)

∫
RN−1

GD
R (t− s, x− z) v|y=0(s, z) dz ds,

where U = U(t, x) denotes the well-known solution to the Cauchy problem (2.5). Hence,
thanks the control (2.12) we just established on v,

|u(t, x)| ≲
∥u0∥L1(RN−1) e

−µt

t
N−1

2
+ e−µt

∫ t

0
eµs ln(1 + s)

(1 + s) N
2
ds+ e−µt

∫ t

0
eµs 1

(1 + s) N
2
ds.

(5.7)
We now treat the two temporal convolutions in (5.7). To do so, remark that

d

ds

(
eµs

µ

ln(1 + s)
(1 + s) N

2

)
= eµs ln(1 + s)

(1 + s) N
2

+ eµs

µ

1 − N
2 ln(1 + s)

(1 + s) N+2
2

s→∞∼ eµs ln(1 + s)
(1 + s) N

2

yields
∫ t

0 e
µs ln(1+s)

(1+s)
N
2
ds

t→∞∼ eµt

µ
ln(1+t)
(1+t)

N
2

. Similarly,

d

ds

(
eµs

µ

1
(1 + s) N

2

)
= eµs 1

(1 + s) N
2

− eµs

µ

N
2

(1 + s) N+2
2

s→∞∼ eµs 1
(1 + s) N

2

yields
∫ t

0 e
µs 1

(1+s)
N
2
ds

t→∞∼ eµt

µ
1

(1+t)
N
2

. Therefore,

|u(t, x)| ≲
∥u0∥L1(RN−1) e

−µt

t
N−1

2
+

ln(1 + t)
(1 + t) N

2
+

(1 + t) N
2
,

which provides the control (2.13) on u up to changing the value of if necessary.
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It now remains to prove Lemma 5.1.

Proof of Lemma 5.1. The proof is related to the study of the δ-indexed polynomials Pδ in
Appendix A.2. As δ = (D − d)∥ξ∥2 browses R+, the polynomials Pδ may provide double or
triple roots for, at most, two values of δ — see Lemmas A.2 to A.5 (i). In Lemmas A.2 to
A.5 we build a closed set E of R+ so that, for δ ∈ E , the roots α, β, γ remain away from each
other and so that each connected component of Ec contains one and only one δi (i = 0, 1 or
2) which provides a multiple root λi. This proof is divided into three steps:

(i) We treat the cases where δ ∈ E for which, thanks to the boundedness of a, b and c, we
can consider aαΦα, bβΦβ and cγΦγ independently.
We deal then with the situations where δ ∈ Ec. In those, because a, b and c may be
unbounded we must consider aαΦα, bβΦβ and cγΦγ together. Let δ ∈ Ec, then there
is i ∈ {0, 1, 2} such that δ ∈ (δi − η, δi + η) — recall that δ = δi provides the multiple
root λi and that η is defined in Lemmas A.3 to A.5.

(ii) We treat the cases where the root λi is double.

(iii) We treat the cases where the root λi is triple.

Before starting, we emphasize that (A.5) insures Re(α),Re(β),Re(γ) ≤ 0 which allows us to
use the estimates (A.4) at point z = −2 •

√
d t+y

2
√

dt
for • in the convex hull of α, β and γ. Notice

that, in the sequel, we shall often write Φ• for Φ•(t, ξ, y).

Step (i). Because inf
δ∈E

(|α− β| , |α− γ| , |β − γ|) > ε, we have

sup
δ∈E

(|a| , |b| , |c|) < 1
ε2 . (5.8)

Next, using (A.4), we have, for λ ∈ {α, β, γ},

|λΦλ| =
∣∣∣∣∣λErfc

Γ

(
−2λ

√
d t+ y

2
√
dt

)∣∣∣∣∣ ≲ 2 |λ|
√
dt∣∣∣−2λ

√
d t+ y

∣∣∣ ≤ 1√
t
,

the last inequality coming from Re(λ) ≤ 0 and y ≥ 0. Gathering the latter inequality with
(5.8) provides, in view of (5.3),

sup
y≥0

sup
δ∈E

|Φ(t, ξ, y)| ≲ 1√
1 + t

for all t ≥ 1. (5.9)

We now turn to the case where 0 < t ≤ 1 (still when δ ∈ E). Let δ∞ > 0 be defined as in
Lemma A.1. It is readily seen that

sup
t∈(0,1]

sup
y≥0

sup
δ∈E∩[0,δ∞]

|Φ(t, ξ, y)| < +∞. (5.10)

Next let us consider δ ≥ δ∞. Since γ = β, c = b, Φγ = Φβ, we deduce from (5.3) that

|Φ| ≤ |aαΦα| + 2 |bβΦβ| . (5.11)
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The first term in the above right-hand-side is clearly bounded while, for the second,

|bβΦβ| = |β| |Φβ|
|β − α| |β − γ|

≤ |Φβ|
|β − α|

≤ |Φβ|
ε

< +∞.

Hence
sup

t∈(0,1]
sup
y≥0

sup
δ∈E∩[δ∞,+∞)

|Φ(t, ξ, y)| < +∞. (5.12)

From (5.10) and (5.12), we deduce that (5.9) actually holds true for all t > 0, and we are
done with this case.

Step (ii). Without loss of generality, we may, to fix ideas, suppose that δ → δi (i = 1 or 2)
provides the merging of the simple roots α and β into the double root λi — see Lemmas A.4
and A.5. Recall in that case that

inf
δ∈(δi−η,δi+η)

inf
λ∈[α,β]

(|λ| , |λ− γ|) > ε,

for some η > 0. Then, for δ ∈ (δi − η, δi + η) and λ ∈ [α, β], one sets

ψλ = ψλ(t, ξ, y) := λ(Φλ − Φγ)
λ− γ

,

and we claim that

sup
y≥0

sup
δ∈(δi−η,δi+η)

sup
λ∈[α,β]

∣∣ψ′
λ

∣∣ ≲ 1√
1 + t

, ∀t > 0, (5.13)

where ψ′
λ denotes (∂•ψ•)λ(t, ξ, y). Using aα+ bβ + cγ = 0 we get

|Φ| = |aα(Φα − Φγ) + bβ(Φβ − Φγ)|

= |ψα − ψβ|
|α− β|

≤ sup
y≥0

sup
δ∈(δi−η,δi+η)

sup
λ∈[α,β]

∣∣ψ′
λ

∣∣
≲

1√
1 + t

,

where we used the mean value inequality to provide third line.
It thus only remains to prove the claim (5.13). We have

ψ′
λ = λΦ′

λ

λ− γ
− γΦλ

(λ− γ)2 + γΦγ

(λ− γ)2 ,

where Φ′
λ denotes (∂•Φ•)λ(t, ξ, y). It is at first clear that

sup
t∈(0,1]

sup
y≥0

sup
δ∈(δi−η,δi+η)

sup
λ∈[α,β]

∣∣ψ′
λ

∣∣ < +∞. (5.14)

Next, using control (A.4), we have, for λ ∈ [α, β],

∣∣Φ′
λ

∣∣ =
√
t

∣∣∣∣∣
(Erfc

Γ

)′
(

−2λ
√
d t+ y

2
√
dt

)∣∣∣∣∣ ≲ √
t

4dt∣∣∣−2λ
√
d t+ y

∣∣∣2 ≤ 1
|λ|2

√
t
,
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|Φλ| =
∣∣∣∣∣Erfc

Γ

(
−2λ

√
d t+ y

2
√
dt

)∣∣∣∣∣ ≲ 2
√
dt∣∣∣−2λ

√
d t+ y

∣∣∣ ≤ 1
|λ|

√
t
,

|γΦγ | =
∣∣∣∣∣γErfc

Γ

(
−2γ

√
d t+ y

2
√
dt

)∣∣∣∣∣ ≲ |γ| 2
√
dt∣∣∣−2γ

√
d t+ y

∣∣∣ ≤ 1√
t
,

and so, because |λ| > ε — see Lemmas A.4 and A.5, (iii) —, one gets, for all t ≥ 1,

sup
y≥0

sup
δ∈(δi−η,δi+η)

sup
λ∈[α,β]

∣∣ψ′
λ

∣∣ ≲ 1√
1 + t

. (5.15)

Gathering (5.14) and (5.15) finally gives (5.13) for all t > 0 and we are done with this case.
Step (iii). We recall in this last case that δ → δ0 provokes the merging of the three simple

roots α, β, γ into the triple root λ0 = −A
√

d
3 . Without loss of generality it may be assumed

that α is the real root, and taking εR and εI as defined in Lemma A.3, (ii), we have

α = λ0 − 2εR, β = λ0 + εR + iεI , γ = λ0 + εR − iεI .

Using again aα+ bβ + cγ = 0 yields

Φ = bβ(Φβ − Φα) + cγ(Φγ − Φα)

= β

β − γ

Φβ − Φα

β − α
− γ

β − γ

Φγ − Φα

γ − α

= β

β − γ

Φβ − Φα

β − α
− γ

β − γ

(Φβ − Φα

β − α

)
= Re

(Φβ − Φα

β − α

)
+ i

β + γ

β − γ
Im

(Φβ − Φα

β − α

)
= Re

(Φβ − Φα

β − α

)
+ λ0 + εR

εI
Im

(Φβ − Φα

β − α

)
. (5.16)

The main issue is now to control second term in (5.16) because one has to compensate the
term εI which vanishes as δ → δ0. To do so, we use a Taylor-Lagrange expansion of Φ• at
• = α which provides, for some λ ∈ [α, β],

Φβ = Φα + (β − α)Φ′
α + (β − α)2

2 Φ′′
λ,

where Φ′
α denotes (∂•Φ•)α, and Φ′′

λ denotes (∂••Φ•)λ. Hence, one gets

Φβ − Φα

β − α
= Φ′

α + 3εR + iεI
2 Φ′′

λ.

Now, because α is real,

Im

(Φβ − Φα

β − α

)
= 3εR

2 Im(Φ′′
λ) + εI

2 Re(Φ′′
λ),

and therefore, using that εR
δ→δ0= O(εI),∣∣∣∣Im(Φβ − Φα

β − α

)∣∣∣∣ ≤
(3

2 |εR| + 1
2 |εI |

) ∣∣Φ′′
λ

∣∣ ≲ ∣∣εIΦ′′
λ

∣∣ .
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As a consequence, by using the mean value inequality to control the first term in (5.16), one
gets

|Φ| ≲ sup
y≥0

sup
δ∈(δ0−η,δ0+η)

sup
ℓ∈[α,β]

∣∣Φ′
ℓ

∣∣ + sup
y≥0

sup
δ∈(δ0−η,δ0+η)

sup
λ∈[α,β]

|λ0 + εR|
∣∣Φ′′

λ

∣∣ .
It is first clear that

sup
t∈(0,1]

sup
y≥0

sup
δ∈(δ0−η,δ0+η)

sup
ℓ∈[α,β]

∣∣Φ′
ℓ

∣∣ < +∞, (5.17)

and
sup

t∈(0,1]
sup
y≥0

sup
δ∈(δ0−η,δ0+η)

sup
λ∈[α,β]

∣∣Φ′′
λ

∣∣ < +∞. (5.18)

Now, using control (A.4), we have, for ℓ and λ ∈ [α, β],

∣∣Φ′
ℓ

∣∣ =
√
t

∣∣∣∣∣
(Erfc

Γ

)′
(

−2ℓ
√
d t+ y

2
√
dt

)∣∣∣∣∣ ≲ √
t

4dt∣∣∣−2ℓ
√
d t+ y

∣∣∣2 ≤ 1
|ℓ|2

√
t
,

∣∣Φ′′
λ

∣∣ = t

∣∣∣∣∣
(Erfc

Γ

)′′
(

−2λ
√
d t+ y

2
√
dt

)∣∣∣∣∣ ≲ t
8(dt) 3

2∣∣∣−2λ
√
d t+ y

∣∣∣3 ≤ 1
|λ|3

√
t
,

and thus, because |ℓ| and |λ| > ε — see Lemma A.3, (iv) —, one gets, for all t ≥ 1,

sup
y≥0

sup
δ∈(δ0−η,δ0+η)

sup
ℓ∈[α,β]

∣∣Φ′
ℓ

∣∣ ≲ 1√
1 + t

, (5.19)

sup
y≥0

sup
δ∈(δ0−η,δ0+η)

sup
λ∈[α,β]

∣∣Φ′′
λ

∣∣ ≲ 1√
1 + t

. (5.20)

Gathering (5.17), (5.18), (5.19) and (5.20) finally provides |Φ| ≲ 1√
1+t

for all t > 0, and we
are done with this case which concludes the proof of the lemma.
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6 Numerical explorations
Through this section, we assume N = 2, meaning that the road is a line and we perform
some numerical simulations of the Cauchy problem (1.1) – (2.11). To do so, we truncate the
unbounded domain R × (0,+∞) and work on a bounded box (−2M, 2M) × (0,M), where
M > 0. To preserve the quantity of individuals, we impose the no-flux boundary conditions
through the artificial frontiers. The resolution method is based on a classical finite difference
scheme. Since we consider M ≫ 1 and an initial datum (v0, u0) supported in a “relatively
small” compact compared to the size of the box, we are confident that the numerical solution
should be close to the real solution.

On the decay rate. When D > d, the asymptotic decay rate of the L∞ norm of the solution
(v, u) is expected to be of the magnitude O((1 + t)−1), see Theorem 2.2 and the discussion on
the logarithmic term right after. This is numerically confirmed by the left panel of Figure I.

On the other hand, when D ≤ d (which is not the essence of the field-road model), one
should, based on Remark 4.1, redo the lengthy computations of Section 5 to capture the
asympotic decay rate. We are rather confident that this should not alter the result, and this
is sustained by numerical simulations, see the right panel of Figure I.

Figure I — Decay in log-scale of the solution to the Cauchy problem (1.1)– (2.11) with
N = 2, M = 800, µ = 10 and ν = 1, arising from the datum

(v0, u0) ≡ (1[−10,10]×[10,30],1[−10,10]).

On the level sets. We now turn to numerically explore the form of the level sets of the
solution (v, u). The results are presented in Figure II.

In particular on the bottom panel of Figure II, corresponding to a situation where D = 100
and d = 1, we observe the following. There holds

−∂yv|y=0(t = 1000, ) < 0 in the “middle of the road”,
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meaning that the individuals mainly switch from the field to the road. On the other hand,
there holds

−∂yv|y=0(t = 1000, ) > 0 “far away” on the road,

meaning that the individuals mainly switch from the road to the field. Roughly speaking, the
road sucks up individuals in the central region (corresponding to the bulk of the population)
and spits them out in the far away region (corresponding to the tails of the population).

On the other hand, on the top panel of Figure II, corresponding to a situation where
D = 0.1 and d = 1, there holds −∂yv|y=0(t = 1000, ) ≈ 0 (since the level sets of v are almost
perpendicular to the road), meaning that there are very few exchanges between the field and
the road. This can be observed with further accuracy in Figure V.

Figure II — Two snapshots at time t = 1000 of a few level sets of the solution to the
Cauchy problem (1.1)– (2.11) with N = 2, M = 200, d = µ = ν = 1 and two different values

for D, arising from the datum (v0, u0) ≡ (1[−5,5]×[0,5], 0).

On the flux. In view of the above considerations, we are now interested in

F (t, x) := µu(t, x) − νv|y=0(t, x) = −d∂yv|y=0(t, x)

which is the flux entering the field.
When D = 100 and d = 1, Figure III confirms that the flux is negative in the middle

of the road, and positive far away. Furthermore if we denote x0(t) the (rightmost) position
where the flux changes sign, that is F (t, x0(t)) = 0, the left panel of Figure IV suggest that
x0(t) asymptotically behaves like O(t1/2). Last, the right panel of Figure IV indicates that
the asymptotic decay rate of the flux at x = 0 is of the magnitude O((1 + t)−3/2).
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Figure III — Plot of the flux entering the field, F (t, x) = µu(t, x) − νv|y=0(t, x), of the
solution to the Cauchy problem (1.1)– (2.11) with N = 2, M = 200, d = µ = ν = 1 and

D = 100, arising from the datum (v0, u0) ≡ (1[−5,5]×[0,5], 0), for eight different values of time.

Figure IV — Plots in log-scale of x0(t) (on left) and |F (t, 0)| (on right) for the solution to
the Cauchy problem (1.1)– (2.11) with N = 2, M = 200, d = µ = ν = 1 and D = 100,

arising from the datum (v0, u0) ≡ (1[−5,5]×[0,5], 0).

When D = 0.1, d = 1, Figure V indicates that the flux is positive in the middle of the road,
and negative far away, that is the opposite situation than the previous case. Furthermore if
we denote x0(t) the (rightmost) position where the flux changes sign, that is F (t, x0(t)) = 0,
the left panel of Figure VI suggest that x0(t), again, asymptotically behaves like O(t1/2).
Last, the right panel of Figure VI indicates that the asymptotic decay rate of the flux at
x = 0 is of the magnitude O((1 + t)−2), which is in contrast with the previous case.
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Figure V — Plot of the flux entering the field, F (t, x) = µu(t, x) − νv|y=0(t, x), of the
solution to the Cauchy problem (1.1)– (2.11) with N = 2, M = 200, d = µ = ν = 1 and

D = 0.1, arising from the datum (v0, u0) ≡ (1[−5,5]×[0,5], 0), for eight different values of time.

Figure VI — Plots in log-scale of x0(t) (on left) and |F (t, 0)| (on right) for the solution to
the Cauchy problem (1.1)– (2.11) with N = 2, M = 200, d = µ = ν = 1 and D = 0.1, arising

from the datum (v0, u0) ≡ (1[−5,5]×[0,5], 0).

On the threshold value for the shape of the flux. From the above, the shape of the flux
function F is very dependent on the value of D (d = 1 being fixed). As we may see in Figure
VII, it seems there is a threshold value at D = 2. This could be related to the enhanced
spreading speed for the Fisher-KPP system (1.2), noticed in the original paper [10], when
D > 2d. It would be interesting to have a result that highlights some connections between
the purely diffusive system (1.1) from one side, and the nonlinear system (1.2) from the other
side, especially to identify more clearly the reason for this threshold.
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Figure VII — Plot of F (3000, 0) (on left) and the decay rate of |F (t, 0)| (on right) with
different values of D for the solution to the Cauchy problem (1.1)– (2.11) with N = 2,

M = 300, d = µ = ν = 1, arising from the datum (v0, u0) ≡ (1[−20,20]×[0,20], 0).

Let us make a concluding remark on the asymptotic decay rate of the flux. Notice that we
have focused on the flux at x = 0. However, the L∞ norm of the flux is not always attained
at this point. In particular, we have numerically observed that, in the vicinity of x = 0, the
flux is “dromedary shaped” (one bump) when D is much smaller than 2, but “camel shaped”
(two bumps) when D is slightly smaller than 2. This oscillation phenomenon would deserve
further investigations.

A Appendix

A.1 The complementary error function Erfc
Recalling that Γ(ℓ) = e−ℓ 2 , the Erfc function is defined by

Erfc (x) := 2√
π

∫ +∞

x
Γ(y) dy, x ∈ R, (A.1)

and has an holomorphic continuation, namely

Erfc (z) := 1 − 2√
π

+∞∑
k=0

(−1)k

(2k + 1)k!z
2k+1, z ∈ C. (A.2)

For any small δ > 0, we have the asymptotic expansion, see [19, page 393] or [14, page
262],

√
π

Erfc
Γ (z) = 1

z
− 1

2z3 + 3
4z5 + o

(
1

|z|6

)
, as |z| → +∞, (A.3)

uniformly in {z ∈ C : |arg(z)| ≤ 3π
4 − δ} — see Figure IX. By computing the derivatives of

Erfc
Γ and using (A.3) one can check that, for all non-zero z ∈ R+ + iR,

∣∣∣∣Erfc
Γ (z)

∣∣∣∣ ≲ 1
|z|
,

∣∣∣∣ ddz Erfc
Γ (z)

∣∣∣∣ ≲ 1
|z|2

,

∣∣∣∣∣ d 2

dz2
Erfc

Γ (z)
∣∣∣∣∣ ≲ 1

|z|3
. (A.4)
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Figure VIII — Plot of |Erfc (z)|. Figure IX — Plot of
∣∣∣Erfc

Γ (z)
∣∣∣.

A.2 The polynomials Pδ

Let µ, ν, d > 0 be given. For δ ≥ 0, we consider the polynomial

Pδ(σ) := σ3 +A
√
d σ2 + (µ+ δ)σ +A

√
d δ,

where A := ν
d . We denote α(δ), β(δ) and γ(δ) its three complex roots. Notice that 0 is a

root if and only if δ = 0. Recall that Pδ has multiple roots if and only if the discriminant

∆δ := 18A2d(µ+ δ)δ − 4A4d2δ +A2d(µ+ δ)2 − 4(µ+ δ)3 − 27A2dδ2

vanishes. As a consequence, α, β and γ are distinct for almost all δ ≥ 0.
As easily checked, the real roots belong to (−A

√
d , 0] and, since α+ β + γ = −A

√
d , we

have
−A

√
d < Re(α(δ)), Re(β(δ)), Re(γ(δ)) ≤ 0, for all δ ≥ 0. (A.5)

Then, a more detailed analysis provides further information about the nature and the be-
haviour of the roots, as stated in the following lemmas.

Lemma A.1 (Large values of δ) There is δ∞ > 0 large enough such that, for all δ ≥ δ∞,
the three roots are simple, one is real (say α) and the two others are complex conjugated (say
Im(β) > 0 and Im(γ) < 0). Moreover, we have

lim
δ→+∞

α(δ) = −A
√
d , lim

δ→+∞
Re(β(δ)) = 0, lim

δ→+∞
Im(β(δ)) = +∞,

so that, up to increasing δ∞ if necessary, |β − γ| > |β| for all δ ≥ δ∞.

Next we fix ν > 0 and d > 0 (and thus A) and describe the situations while decreasing
the parameter µ from +∞ to 0. Most of the results can be seen at a glance on Figure X.
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Figure X — Multiplicity of the roots of Pδ for fixed ν, d. Fix the last parameter µ > 0,
then δ browses [0,+∞).

Lemma A.2 (Only simple roots) Assume µ > 8A2d
27 is fixed and set E := R+.

(i) For all δ ∈ E, the three roots are simple, one is real and the two others are complex
conjugated.

(ii) There is ε > 0 such that inf
δ∈E

(|α− β| , |α− γ| , |β − γ|) > ε.

Lemma A.3 (Appearance of a triple root) Assume µ = 8A2d
27 and set δ0 := A2d

27 .

(i) If δ ̸= δ0, the three roots are simple, one is real and the two others are complex conju-
gated, and as δ encounters δ0, the three simple roots merge in a triple root λ0 = −A

√
d

3 .

Without loss of generality, we assume that α is the real root for all δ ≥ 0.

(ii) Letting εR := Re(β) − λ0 and εI := Im(β), one has

α = λ0 − 2εR, β = λ0 + εR + iεI , γ = λ0 + εR − iεI ,

and εR
δ→δ0= O(εI).

Define η := δ0
2 and E := R+ \ (δ0 − η, δ0 + η), then there is ε > 0 such that

(iii) inf
δ∈E

(|α− β| , |α− γ| , |β − γ|) > ε,

(iv) inf
δ∈Ec

inf
λ∈[α,β]

|λ| > ε.

Lemma A.4 (Appearance of a double root, two times) Assume A2d
4 ≤ µ < 8A2d

27 , then there
are 0 ≤ δ1 < δ2 such that the following holds.

(i) If δ ̸= δ1 and δ ̸= δ2, the three roots are simple and as δ encounters δi (i = 1 or 2), two
of the three simple roots merge in a double root λi.

27



Without loss of generality, we assume that, for i = 1 or 2, the double root λi derives from
the merging of α and β. Define η := δ2−δ1

2 and E := R+ \ [(δ1 − η, δ1 + η) ∪ (δ2 − η, δ2 + η)],
then there is ε > 0 such that

(ii) inf
δ∈E

(|α− β| , |α− γ| , |β − γ|) > ε,

(iii) inf
δ∈Ec

inf
λ∈[α,β]

(|λ| , |λ− γ|) > ε.

Lemma A.5 (Appearance of a double root, one time) Assume 0 < µ < A2d
4 , then there is

δ2 > 0 such that the following holds.

(i) If δ ̸= δ2, the three roots are simple and as δ encounters δ2, two of the three simple roots
merge in a double root λ2.

Without loss of generality, we assume that the double root λ2 derives from the merging of α
and β. Define η := δ2

2 and E := R+ \ (δ2 − η, δ2 + η), then there is ε > 0 such that

(ii) inf
δ∈E

(|α− β| , |α− γ| , |β − γ|) > ε,

(iii) inf
δ∈Ec

inf
λ∈[α,β]

(|λ| , |λ− γ|) > ε.

A.3 Fourier, Laplace and Fourier/Laplace transforms

The transforms of a function w depending on t > 0 and x ∈ RN−1 we use are

• the x-Fourier one (said “hat w”):

w(t, ξ) = F [w(t, )] (ξ) :=
∫
RN−1

w(t, z)e−iξ·zdz;

• the t-Laplace one (said “frown w”):

w(s, x) = L [w( , x)] (s) :=
∫ +∞

0
w(τ, x)e−sτdτ ;

• the x-Fourier/t-Laplace one (said “frown-hat w”):

w(s, ξ) = FL [w( , )] (s, ξ) :=
∫
RN−1

∫ +∞

0
w(τ, z)e−(sτ+iξ·z)dτdz.

The following Fourier and Laplace transforms are well-known — see, e.g., [30, page 250,
lines 84 and 88] for (iii) and (iv).

Lemma A.6 (Useful x-Fourier and t-Laplace transforms) For all a ∈ R and all b ∈ C,

(i) F
[
x 7→ e−

∥x∥2
4a

(4πa)
N−1

2

]
(ξ) = e−a∥ξ∥2, a > 0.

(ii) L
[
t 7→ e−at

]
(s) = 1

a+s , s > −a.
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(iii) L
[
t 7→ e− a2

4t√
πt

]
(s) = e−a

√
s

√
s

, s > 0.

(iv) L
[
t 7→ Erfc

Γ

(
a+2bt
2
√

t

)
e− a2

4t

]
(s) = e−a

√
s

√
s (√

s + b) , s > Re(b)2.

(v) L
[
t 7→ e− a2

4t

(
1√
πt

+ b Erfc
Γ

(
a−2bt
2
√

t

))]
(s) = e−a

√
s

√
s − b

, s > Re(b)2.

where Γ(ℓ) := e−ℓ 2 and the definition of Erfc being recalled in Appendix A.1.

Lemma A.7 (Properties on x-Fourier and t-Laplace transforms) For f, g : R → C, all a ∈ R
and s > 0,

(i) f(x) = 1
(2π)N−1

∫
RN−1 F [f ] (ξ) eiξ·xdξ,

(ii) F [f ] × F [g] = F [f ∗ g] = F [x 7→
∫
RN−1 f(x− z)g(z)dz],

(iii) L [f ] × L [g] = L
[
t 7→

∫ t
0 f(t− τ)g(τ)dτ

]
,

(iv) L
[
t 7→ e−atf(t)

]
(s) = L [f ] (s+ a).
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